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GPUs Power Modern Computing -
Openness Remains Limited
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Core GPU microarchitecture and compiler internals 
remain largely inaccessible to researchers



What Research Needs Beyond Exposed 
APIs
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?

GPU research would benefit from openness beyond exposed APIs



What Research Needs Beyond Exposed 
APIs
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Vortex GPU provides a fully open-source GPU platform



Vortex GPU 
• RISC-V based GPGPU
• Highly reconfigurable hierarchical 

architecture 
• SIMT execution model
• Explicit hardware support for SIMT 

behavior, including control-flow 
divergence and barriers

• Drivers for host-device communication
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Open GPU hardware is advancing rapidly, while compiler support 
remains underexplored



Program Execution on Vortex GPU
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Vortex GPU
• Kernel binary using the Vortex GPU ISA

• Host executable using Vortex driver

Program
• Kernel code with control flow & special func

• Host Code with device communication

__kernel void foo(){
tid = get_global_id(0);
…
barrier(…);

}

__host int main(){
…
cl_mem A_clmem = clCreateBuffer(context, …); 
clEnqueueNDRangeKernel(command_queue, …);
…

}



Growing GPU Variants on Vortex
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Vortex GPU Variant
• Kernel binary using the Extended Vortex GPU ISA

• Host executable using Extended Vortex driver

__kernel void foo(){
tid = get_global_id(0);
…
barrier(…);

}

__host int main(){
…
cl_mem A_clmem = clCreateBuffer(context, …); 
clEnqueueNDRangeKernel(command_queue, …);
…

}

Program
• Kernel code with control flow & special func

• Host Code with device communication

HW-Side Consideration
• Flexible Hardware & 

Microarchitecture & 
Number of HW Component

• Flexible ISA & Runtime

Virgo
SkyBox

SparseWeaver

Tensor core

Tapeout



Programs from Diverse Frontends
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Program with Diverse Frontend
• Kernel code with Frontend-specific semantics

• Host Code with Frontend-specific runtimes

HW-Side Consideration
• Flexible Hardware & 

Microarchitecture & 
Number of HW Component

• Flexible ISA & Runtime

Virgo
SkyBox

SparseWeaver

Tensor core

TapeoutTriton

Vortex GPU Variant
• Kernel binary using the Extended Vortex GPU ISA

• Host executable using Extended Vortex driver



Managing Growing GPU Variants and 
Diverse Frontends
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Program with Diverse Frontend
• Kernel code with Frontend-specific semantics

• Host Code with Frontend-specific runtimes

Virgo
SkyBox

SparseWeaver

Tensor core

Tapeout

Vortex GPU Variant
• Kernel binary using the Extended Vortex GPU ISA

• Host executable using Extended Vortex driverThis Calls for a Well-Designed Compiler Framework

Triton



Key Challenges in Designing VOLT
• Challenge 1: Make SIMT-aware code generation and optimizations portable

• How can we preserve SIMT-aware code generation and optimizations
while remaining portable across Vortex variants and potentially other open GPUs?

• Challenge 2: Support multiple frontends with minimal maintenance 
overhead

• How can we design the compiler so that new frontends and GPU variants
can be added with minimal refactoring?
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Vortex-Optimized Lightweight Toolchain (VOLT)
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Front-end Compilers

Middle-end Compiler

Hierarchical Compiler 
Design

CuPBoP

Back-end Compiler

• Design Choice 1
• Hierarchical compiler design
• Centralize fundamental SIMT-related 

analyses and optimizations in the middle-
end

• Design Choice 2
• Leverage existing open-source 

components as much as possible



Front-end Compiler 
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Front-end Compiler CuPBoP

GPU Host Code

Host Code Compilation

Host Runtime for HW Target 
Translator 

Runtime Lib Linking

Semantic Analyzer

Host Binary 

• Handles Both Host and Kernel Code

• Host Code
• Compiled for the host hardware
• Translates the frontend host functions

using the target runtime library

Blue boxes indicate components extended or implemented for the Vortex GPU



Front-end Compiler 
• Handles Both Host and Kernel Code

• Kernel Code
• Performs semantics-aware code 

optimizations
• Transforms special functions using 

built-in libraries
• Inserts thread scheduling and spawning 

code for device initialization
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Front-end Compiler

Semantic-aware Code Optimization

Built-in 
library

CuPBoP

Built-in Library Linking

Memory Structure Handling

Function Call Analysis 

Thread Scheduling Code Generation
Thread Scheduling and Spawn Code 

Insertion

IR Generator 

GPU Kernel Code

LLVM module
Blue boxes indicate components extended or implemented for the Vortex GPU



Middle-end Compiler 
• Target-independent optimizations 
• Minimal target-specific logic
• Thread Divergence management 

treated as a first-class concern
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LLVM module

Middle-end Compiler

Divergence Management

Optimization and Transformation

Uniformity Analysis

Divergence Management Function Insertion

General Code Optimizations

Divergence Tracker

LLVM module

Blue boxes indicate components extended or implemented for the Vortex GPU



Thread Divergence Management

• SIMD
• Single instruction applied to multiple data 

elements
• Uniform control flow
• Divergent branches are serialized

• SIMT
• Threads execute in lockstep under a shared 

instruction stream
• Each thread has its own registers and stack
• Control-flow divergence is handled via 

masking and serialization
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A

B

C

D

If (threadid.x<2) {
work B

} else { 
work C

}

Divergent branch! 



Thread Divergence Management

• Divergence management 
microarchitecture 

• IPDOM stack for handling divergence 
and reconvergence

• Per-warp thread mask for control-flow 
management

• ISA support 
• Thread mask control instruction
• Split and join instructions for If
• Predicate instruction for loop

17

A

B

C

D

If (threadid.x<2) {
work B

} else { 
work C

}

Divergent branch! 

while(r1 != 0){
++r2;
--r1;

}

seqz r3, r1, #0
vx_split r0, r3
bne r3, #0, @join

@phead: vx_tmask r4
@body:  add r2, r2, #1

subi r1, r1, #1
cmp r3,r1, #0
vx_pred r3, r4
bne r3, @body

@join:  vx_join r0

if(r1){
++r2; 

}else{
--r1;

}

vx_split r0, r1
bne r1, #0, @then

@else: subi r2, r2, #1
j @join

@then: addi r2, r2, #1
@join: vx_join r0



Middle-end Compiler 
• Uniformity Analysis

• Find divergent instructions and always 
uniform instructions 

• Divergence Tracker 
• Mark Function arg, returns, Atomic as 

Divergent 
• Mark Control and Status Register info 

as Uniform 
• Propagate information
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LLVM module

Middle-end Compiler

Divergence Management

Optimization and Transformation

Uniformity Analysis

Divergence Management Function Insertion

General Code Optimizations

Divergence Tracker

LLVM module

Blue boxes indicate components extended or implemented for the Vortex GPU



Middle-end Compiler 
• Uniformity Analysis

• Identify divergent instructions and always-
uniform instructions

• Annotation analysis 
• Leverage annotation information from 

the user or the front-end compiler
• Function argument analysis

• Determine the uniformity of each 
function’s arguments
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LLVM module

Middle-end Compiler

Divergence Management

Optimization and Transformation

Uniformity Analysis

Divergence Management Function Insertion

General Code Optimizations

Divergence Tracker

LLVM module

Blue boxes indicate components extended or implemented for the Vortex GPU



Middle-end Compiler 
• Divergence Optimization

• Code Simplification
• Simplifies control flow
• Canonicalizes control flow to 

simplify subsequent divergence 
handling

• Control-Flow Structurization
• Transforms the CFG into a 

structured form to provide stable 
join points

• Essential for IPDOM-based 
divergence and reconvergence 
handling
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Structurization



Middle-end Compiler 
• Divergence Optimization

• Control-Flow Reconstruction
• Selectively duplicates basic blocks to 

reduce predicate computation
• Divergence Operation Lowering

• Normalizes divergence operations 
by rewriting them into equivalent 
branch-based control flow
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Reconstruction

Original CFG Reconstructed  
CFG

Structurized
CFG

Structurization



Middle-end Compiler 
• Divergence Intrinsic Insertion

• Split and Join Insertion
• Handling divergent branch with 

vx_split and vx_join instruction
• Loop predicate Insertion 

• Handling divergent loops with 
vx_pred
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LLVM module

Middle-end Compiler

Divergence Management

Optimization and Transformation

Uniformity Analysis

Divergence Management Function Insertion

General Code Optimizations

Divergence Tracker

LLVM module

Blue boxes indicate components extended or implemented for the Vortex GPU



Back-end Compiler 
• Handles target-specific optimizations and 

final code generation

• Built on the RISC-V target compiler
• Extends the ISA table with Vortex-specific 

ISA extensions
• Generates Vortex target binaries
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Vortex Binary

Back-end Compiler

Target Code Generation and 
Optimization

Vortex ISA Table

LLVM module

Blue boxes indicate components extended or implemented for the Vortex GPU



VOLT v1.0 Release
• Our tool is available in our Git repository

• https://github.com/vortexgpgpu/Volt/releases/tag
/v1.0

• The first release supports CUDA 12.1 and 
OpenCL 3.0

• Provides an end-to-end PoCL / CuPBoP / 
LLVM compilation pipeline targeting the 
Vortex GPU
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https://github.com/vortexgpgpu/Volt/releases/tag/v1.0
https://github.com/vortexgpgpu/Volt/releases/tag/v1.0
https://github.com/vortexgpgpu/Volt/releases/tag/v1.0


Guide for VOLT Extensions
• Tutorial 1: Extending kernel functions
• Tutorial 2: Extending host functions
• Tutorial 3: Extending memory support with 

the Vortex memory hierarchy

• All tutorials include documentation under 
/Docs and runnable examples under /Tests.
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Divergence Management Optimization
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Research Directions with Volt & Vortex

1. Micro-architectural Compiler Optimization
• Fine-grained instruction & warp scheduling
• Latency hiding via instruction prefetching
• Adaptive workload distribution and occupancy control

2. Architecture-aware Optimization & Analysis
• Exploitation Heterogeneous core 
• Explore reconfigurable options

3. HW / SW Co-design Exploration
• Co-design of custom GPU extensions and compiler support
• ISA or micro-architectural features
• Feedback-driven optimization between hardware, compiler, and runtime 
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Conclusion
• VOLT is a lightweight, extensible compiler toolchain optimized for Vortex 
• Hierarchical design, Centralize SIMT-aware optimizations in the middle-

end
• Enables portability across Vortex variants

• Thread divergence management is treated as a first-class concern
• Uniformity analysis, divergence tracking, and control-flow optimizations
• Improves performance and reduces instruction count

• Extensibility and reproducibility
• Clear extension points for kernel, host, and memory support
• Tutorials, documentation, and shared scripts enable easy adoption and extension

28



Thank you 
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