
Inside VOLT: Designing an Open-
Source GPU Compiler

Shinnung Jeong1, Chihyo Ahn1, Huanzhi Pu1, Jisheng Zhao1,
Hyesoon Kim1, Blaise Tine2

1Georgia Institute of Technology, 2University of California, Los Angeles

GPUs Power Modern Computing -
Openness Remains Limited

2

Core GPU microarchitecture and compiler internals
remain largely inaccessible to researchers

What Research Needs Beyond Exposed
APIs

3

?

GPU research would benefit from openness beyond exposed APIs

What Research Needs Beyond Exposed
APIs

4

Vortex GPU provides a fully open-source GPU platform

Vortex GPU
• RISC-V based GPGPU
• Highly reconfigurable hierarchical

architecture
• SIMT execution model
• Explicit hardware support for SIMT

behavior, including control-flow
divergence and barriers

• Drivers for host-device communication

5

Vortex GPU
• RISC-V based GPGPU
• Highly reconfigurable hierarchical

architecture
• SIMT execution model
• Explicit hardware support for SIMT

behavior, including control-flow
divergence and barriers

• Drivers for host-device communication

6

Open GPU hardware is advancing rapidly, while compiler support
remains underexplored

Program Execution on Vortex GPU

7

Vortex GPU
• Kernel binary using the Vortex GPU ISA

• Host executable using Vortex driver

Program
• Kernel code with control flow & special func

• Host Code with device communication

__kernel void foo(){
tid = get_global_id(0);
…
barrier(…);

}

__host int main(){
…
cl_mem A_clmem = clCreateBuffer(context, …);
clEnqueueNDRangeKernel(command_queue, …);
…

}

Growing GPU Variants on Vortex

8

Vortex GPU Variant
• Kernel binary using the Extended Vortex GPU ISA

• Host executable using Extended Vortex driver

__kernel void foo(){
tid = get_global_id(0);
…
barrier(…);

}

__host int main(){
…
cl_mem A_clmem = clCreateBuffer(context, …);
clEnqueueNDRangeKernel(command_queue, …);
…

}

Program
• Kernel code with control flow & special func

• Host Code with device communication

HW-Side Consideration
• Flexible Hardware &

Microarchitecture &
Number of HW Component

• Flexible ISA & Runtime

Virgo
SkyBox

SparseWeaver

Tensor core

Tapeout

Programs from Diverse Frontends

9

Program with Diverse Frontend
• Kernel code with Frontend-specific semantics

• Host Code with Frontend-specific runtimes

HW-Side Consideration
• Flexible Hardware &

Microarchitecture &
Number of HW Component

• Flexible ISA & Runtime

Virgo
SkyBox

SparseWeaver

Tensor core

TapeoutTriton

Vortex GPU Variant
• Kernel binary using the Extended Vortex GPU ISA

• Host executable using Extended Vortex driver

Managing Growing GPU Variants and
Diverse Frontends

10

Program with Diverse Frontend
• Kernel code with Frontend-specific semantics

• Host Code with Frontend-specific runtimes

Virgo
SkyBox

SparseWeaver

Tensor core

Tapeout

Vortex GPU Variant
• Kernel binary using the Extended Vortex GPU ISA

• Host executable using Extended Vortex driverThis Calls for a Well-Designed Compiler Framework

Triton

Key Challenges in Designing VOLT
• Challenge 1: Make SIMT-aware code generation and optimizations portable

• How can we preserve SIMT-aware code generation and optimizations
while remaining portable across Vortex variants and potentially other open GPUs?

• Challenge 2: Support multiple frontends with minimal maintenance
overhead

• How can we design the compiler so that new frontends and GPU variants
can be added with minimal refactoring?

11

Vortex-Optimized Lightweight Toolchain (VOLT)

12

Front-end Compilers

Middle-end Compiler

Hierarchical Compiler
Design

CuPBoP

Back-end Compiler

• Design Choice 1
• Hierarchical compiler design
• Centralize fundamental SIMT-related

analyses and optimizations in the middle-
end

• Design Choice 2
• Leverage existing open-source

components as much as possible

Front-end Compiler

13

Front-end Compiler CuPBoP

GPU Host Code

Host Code Compilation

Host Runtime for HW Target
Translator

Runtime Lib Linking

Semantic Analyzer

Host Binary

• Handles Both Host and Kernel Code

• Host Code
• Compiled for the host hardware
• Translates the frontend host functions

using the target runtime library

Blue boxes indicate components extended or implemented for the Vortex GPU

Front-end Compiler
• Handles Both Host and Kernel Code

• Kernel Code
• Performs semantics-aware code

optimizations
• Transforms special functions using

built-in libraries
• Inserts thread scheduling and spawning

code for device initialization

14

Front-end Compiler

Semantic-aware Code Optimization

Built-in
library

CuPBoP

Built-in Library Linking

Memory Structure Handling

Function Call Analysis

Thread Scheduling Code Generation
Thread Scheduling and Spawn Code

Insertion

IR Generator

GPU Kernel Code

LLVM module
Blue boxes indicate components extended or implemented for the Vortex GPU

Middle-end Compiler
• Target-independent optimizations
• Minimal target-specific logic
• Thread Divergence management

treated as a first-class concern

15

LLVM module

Middle-end Compiler

Divergence Management

Optimization and Transformation

Uniformity Analysis

Divergence Management Function Insertion

General Code Optimizations

Divergence Tracker

LLVM module

Blue boxes indicate components extended or implemented for the Vortex GPU

Thread Divergence Management

• SIMD
• Single instruction applied to multiple data

elements
• Uniform control flow
• Divergent branches are serialized

• SIMT
• Threads execute in lockstep under a shared

instruction stream
• Each thread has its own registers and stack
• Control-flow divergence is handled via

masking and serialization

16

A

B

C

D

If (threadid.x<2) {
work B

} else {
work C

}

Divergent branch!

Thread Divergence Management

• Divergence management
microarchitecture

• IPDOM stack for handling divergence
and reconvergence

• Per-warp thread mask for control-flow
management

• ISA support
• Thread mask control instruction
• Split and join instructions for If
• Predicate instruction for loop

17

A

B

C

D

If (threadid.x<2) {
work B

} else {
work C

}

Divergent branch!

while(r1 != 0){
++r2;
--r1;

}

seqz r3, r1, #0
vx_split r0, r3
bne r3, #0, @join

@phead: vx_tmask r4
@body: add r2, r2, #1

subi r1, r1, #1
cmp r3,r1, #0
vx_pred r3, r4
bne r3, @body

@join: vx_join r0

if(r1){
++r2;

}else{
--r1;

}

vx_split r0, r1
bne r1, #0, @then

@else: subi r2, r2, #1
j @join

@then: addi r2, r2, #1
@join: vx_join r0

Middle-end Compiler
• Uniformity Analysis

• Find divergent instructions and always
uniform instructions

• Divergence Tracker
• Mark Function arg, returns, Atomic as

Divergent
• Mark Control and Status Register info

as Uniform
• Propagate information

18

LLVM module

Middle-end Compiler

Divergence Management

Optimization and Transformation

Uniformity Analysis

Divergence Management Function Insertion

General Code Optimizations

Divergence Tracker

LLVM module

Blue boxes indicate components extended or implemented for the Vortex GPU

Middle-end Compiler
• Uniformity Analysis

• Identify divergent instructions and always-
uniform instructions

• Annotation analysis
• Leverage annotation information from

the user or the front-end compiler
• Function argument analysis

• Determine the uniformity of each
function’s arguments

19

LLVM module

Middle-end Compiler

Divergence Management

Optimization and Transformation

Uniformity Analysis

Divergence Management Function Insertion

General Code Optimizations

Divergence Tracker

LLVM module

Blue boxes indicate components extended or implemented for the Vortex GPU

Middle-end Compiler
• Divergence Optimization

• Code Simplification
• Simplifies control flow
• Canonicalizes control flow to

simplify subsequent divergence
handling

• Control-Flow Structurization
• Transforms the CFG into a

structured form to provide stable
join points

• Essential for IPDOM-based
divergence and reconvergence
handling

20

A

B C

E E

D C J2 D

A

J1 B

Original CFG Structurized
CFG

Structurization

Middle-end Compiler
• Divergence Optimization

• Control-Flow Reconstruction
• Selectively duplicates basic blocks to

reduce predicate computation
• Divergence Operation Lowering

• Normalizes divergence operations
by rewriting them into equivalent
branch-based control flow

21

A

B C

E EE

D D` D``C J2 D

AA

B CJ1 B

Reconstruction

Original CFG Reconstructed
CFG

Structurized
CFG

Structurization

Middle-end Compiler
• Divergence Intrinsic Insertion

• Split and Join Insertion
• Handling divergent branch with

vx_split and vx_join instruction
• Loop predicate Insertion

• Handling divergent loops with
vx_pred

22

LLVM module

Middle-end Compiler

Divergence Management

Optimization and Transformation

Uniformity Analysis

Divergence Management Function Insertion

General Code Optimizations

Divergence Tracker

LLVM module

Blue boxes indicate components extended or implemented for the Vortex GPU

Back-end Compiler
• Handles target-specific optimizations and

final code generation

• Built on the RISC-V target compiler
• Extends the ISA table with Vortex-specific

ISA extensions
• Generates Vortex target binaries

23

Vortex Binary

Back-end Compiler

Target Code Generation and
Optimization

Vortex ISA Table

LLVM module

Blue boxes indicate components extended or implemented for the Vortex GPU

VOLT v1.0 Release
• Our tool is available in our Git repository

• https://github.com/vortexgpgpu/Volt/releases/tag
/v1.0

• The first release supports CUDA 12.1 and
OpenCL 3.0

• Provides an end-to-end PoCL / CuPBoP /
LLVM compilation pipeline targeting the
Vortex GPU

24

https://github.com/vortexgpgpu/Volt/releases/tag/v1.0
https://github.com/vortexgpgpu/Volt/releases/tag/v1.0
https://github.com/vortexgpgpu/Volt/releases/tag/v1.0

Guide for VOLT Extensions
• Tutorial 1: Extending kernel functions
• Tutorial 2: Extending host functions
• Tutorial 3: Extending memory support with

the Vortex memory hierarchy

• All tutorials include documentation under
/Docs and runnable examples under /Tests.

25

Divergence Management Optimization

26

0.9
0.95

1
1.05

1.1
1.15

1.2

Base Uni-HW Uni-Ann Uni-func ziCond Recon

Sp
ee

du
ps

b+tree hotspot3D kmeans sgemm3 srad
cfd psort pathfinder transpose

0.95
1

1.05
1.1

1.15
1.2

1.25
1.3

In
str

uc
tio

n
R

ed
uc

tio
n

Fa
ct

or

0.9

0.95

1

1.05

1.1

1.15

1.2

Sp
ee

du
ps

Research Directions with Volt & Vortex

1. Micro-architectural Compiler Optimization
• Fine-grained instruction & warp scheduling
• Latency hiding via instruction prefetching
• Adaptive workload distribution and occupancy control

2. Architecture-aware Optimization & Analysis
• Exploitation Heterogeneous core
• Explore reconfigurable options

3. HW / SW Co-design Exploration
• Co-design of custom GPU extensions and compiler support
• ISA or micro-architectural features
• Feedback-driven optimization between hardware, compiler, and runtime

27

Conclusion
• VOLT is a lightweight, extensible compiler toolchain optimized for Vortex
• Hierarchical design, Centralize SIMT-aware optimizations in the middle-

end
• Enables portability across Vortex variants

• Thread divergence management is treated as a first-class concern
• Uniformity analysis, divergence tracking, and control-flow optimizations
• Improves performance and reduces instruction count

• Extensibility and reproducibility
• Clear extension points for kernel, host, and memory support
• Tutorials, documentation, and shared scripts enable easy adoption and extension

28

Thank you

	Slide 1: Inside VOLT: Designing an Open-Source GPU Compiler
	Slide 2: GPUs Power Modern Computing - Openness Remains Limited
	Slide 3: What Research Needs Beyond Exposed APIs
	Slide 4: What Research Needs Beyond Exposed APIs
	Slide 5: Vortex GPU
	Slide 6: Vortex GPU
	Slide 7: Program Execution on Vortex GPU
	Slide 8: Growing GPU Variants on Vortex
	Slide 9: Programs from Diverse Frontends
	Slide 10: Managing Growing GPU Variants and Diverse Frontends
	Slide 11: Key Challenges in Designing VOLT
	Slide 12: Vortex-Optimized Lightweight Toolchain (VOLT)
	Slide 13: Front-end Compiler
	Slide 14: Front-end Compiler
	Slide 15: Middle-end Compiler
	Slide 16: Thread Divergence Management
	Slide 17: Thread Divergence Management
	Slide 18: Middle-end Compiler
	Slide 19: Middle-end Compiler
	Slide 20: Middle-end Compiler
	Slide 21: Middle-end Compiler
	Slide 22: Middle-end Compiler
	Slide 23: Back-end Compiler
	Slide 24: VOLT v1.0 Release
	Slide 25: Guide for VOLT Extensions
	Slide 26: Divergence Management Optimization
	Slide 27: Research Directions with Volt & Vortex
	Slide 28: Conclusion
	Slide 29: Thank you
	Slide 30: Design Goal of Open GPU Compiler
	Slide 31: Documentation
	Slide 32: Test Scripts

