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GPUs Power Modern Computing -
Openness Remains Limited
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Core GPU microarchitecture and compiler internals
remain largely inaccessible to researchers




What Research Needs Beyond Exposed
APIs
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GPU research would benefit from openness beyond exposed APIs




What Research Needs Beyond Exposed
APIs
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Vortex GPU provides a fully open-source GPU platform
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Open GPU hardware is advancing rapidly, while compiler support
remains underexplored
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Program Execution on Vortex GPU

__kernel void foo(
tid = get_global_id(0);

barrier(...);

}

__hostintmain(){

cl_mem A_clmem = clCreateBuffer(context, ...);
clEnqueueNDRangeKernel(command_queue,...);

Program

* Kernel code with control flow & special func

e Host Code with device communication
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* Kernel binary using the Vortex GPU ISA

* Host executable using Vortex driver



Growing GPU Variants on Vortex

__kernel void foo( -

tid = get_global_id(0); Vlrgo

.t;.arrier(...); . A SkyBox
} "

VORTEX
Tensor core

__hostintmain(){

;i_mem A_clmem = clCreateBuffer(context, ...); SparseWeaver TaPEOUt

clEnqueueNDRangeKernel(command_queue,...);
}

Program Vortex GPU Variant
* Kernel code with control flow & special func * Kernel binary using the Extended Vortex GPU ISA

* Host Code with device communication * Host executable using Extended Vortex driver
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Programs from Diverse Frontends
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Program with Diverse Frontend Vortex GPU Variant

+ Kernel code with Frontend-specific semantics * Kernel binary using the Extended Vortex GPU ISA

* Host Code with Frontend-specific runtimes * Host executable using Extended Vortex driver
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Managing Growing GPU Variants and

Diverse Frontends

4 a Virgo
OpenCL SkyBox
» VORTEX
Tensor core
Triton <ANVIDIA.
CUDA. SparseWeaver Tapeout
Program with Diverse Frontend Vortex GPU Variant

This Calls for a Well-Desighed Compiler Framework




Key Challenges in Designing VOLT

* Challenge 1: Make SIMT-aware code generation and optimizations portable

 How can we preserve SIMT-aware code generation and optimizations
while remaining portable across Vortex variants and potentially other open GPUs?

* Challenge 2: Support multiple frontends with minimal maintenance
overhead

* How can we design the compiler so that new frontends and GPU variants
can be added with minimal refactoring?
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Vortex-Optimized Lightweight Toolchain (VOLT)

* Design Choice 1
* Hierarchical compiler design

* Centralize fundamental SIMT-related
analyses and optimizations in the middle-

end

* Design Choice 2

* Leverage existing open-source
components as much as possible

Front-end Compilersw CuPBoP

o

Middle-end Compiler S

o

Back-end Compiler %4, B/

RISC

Hierarchical Compiler
Design
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Front-end Compiler g@@ cupBoP ()
 Handles Both Host and Kernel Code

Host Code Compilation

Semantic Analyzer

* Host Code
e Compiled for the host hardware Host Runtime for HW Target
* Translates the frontend host functions Translator

using the target runtime library
Runtime Lib Linking

-
Host Binary ;

Blue boxes indicate components extended or implemented for the Vortex GPU 13
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Front-end Compiler g@@ cupBoP ()

* Handles Both Host and Kernel Code IR Generator
Semantic-aware Code Optimization
* Kernel Code Memory Structure Handling
* Performs semantics-aware code Function Call Analysis | [ gyilt-in
optimizations _ _ _ Built-in Library Linking library
* Transforms special functions using
built-in libraries Thread Scheduling Code Generation
* Inserts thread scheduling and spawning Tireae Sdnes uilis 2 § o ot e
code for device initialization Insertion
l N
LLVM module Yoy

Blue boxes indicate components extended or implemented for the Vortex GPU
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Middle-end Compiler .—— 3

A 4

» Target-independent optimizations
* Minimal target-specific logic

* Thread Divergence management
treated as a first-class concern

Middle-end Compiler 2

General Code Optimizations

Divergence Management

Uniformity Analysis || Divergence Tracker

Optimization and Transformation

Divergence Management Function Insertion

LLVM module w2

Blue boxes indicate components extended or implemented for the Vortex GPU
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Thread Divergence Management

Divergent branch!
* SIMD ”
 Single instruction applied to multiple data

elements
* Uniform control flow
* Divergent branches are serialized

* SIMT

* Threads execute in lockstep under a shared
instruction stream

* Each thread has its own registers and stack

* Control-flow divergence is handled via
masking and serialization
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Thread Divergence Management

* Divergence management
microarchitecture

* IPDOM stack for handling divergence
and reconvergence

* Per-warp thread mask for control-flow
management

* ISA support
e Thread mask control instruction
 Split and join instructions for If
* Predicate instruction for loop

Divergent branch!

if(r1){
++r2;

}else{
--rl;

» @else:

@then:
@join:

vx_split ro, ri
bne ri1, #0, @then
subi r2, r2, #1

j @Join

addi r2, r2, #1
vx_join ro

while(rl != 0){
++r2;
--rl;

}

» @phead:
@body:

@join:

seqz r3, rl, #0
vx_split ro, r3
bne r3, #0, @join
vx_tmask r4

add r2, r2, #1
subi r1, ri, #1
cmp r3,rl, #0
vx_pred r3, r4
bne r3, @body
vx_join ro
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Middle-end Compiler w7 )

LLVM module VN

A 4

e Uniformity Analysis Middle-end Compiler

* Find divergent instructions and always
uniform instructions

General Code Optimizations

* Divergence Tracker Divergence Management
* Mark Function arg, returns, Atomic as Uniformity Analysis || Divergence Tracker
Divergent
 Mark Control and Status Register info Optimization and Transformation
as Uniform Divergence Management Function Insertion

* Propagate information

LLVM module w2

Blue boxes indicate components extended or implemented for the Vortex GPU 18



Middle-end Compiler ~

LLVM module S

e Uniformity Analysis
 |dentify divergent instructions and always-
uniform instructions
* Annotation analysis

* Leverage annotation information from
the user or the front-end compiler

* Function argument analysis

* Determine the uniformity of each
function’s arguments

A 4

Middle-end Compiler

General Code Optimizations

Divergence Management

Uniformity Analysis || Divergence Tracker

Optimization and Transformation

Divergence Management Function Insertion

LLVM module w2

Blue boxes indicate components extended or implemented for the Vortex GPU 19



Middle-end Compiler

* Divergence Optimization
* Code Simplification
* Simplifies control flow

* Canonicalizes control flow to
simplify subsequent divergence
handling

e Control-Flow Structurization

* Transforms the CFG into a Structurization
structured form to provide stable
join points o .

* Essential for IPDOM-based Original CFG Strugc:ténzed

divergence and reconvergence
handling
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Middle-end Compiler

Reconstruction

* Divergence Optimization
e Control-Flow Reconstruction e

» Selectively duplicates basic blocks to f
reduce predicate computation e. @‘e e
* Divergence Operation Lowering e Q o e
* Normalizes divergence operations \/ '

by rewriting them into equivalent G e
branch-based control flow

Structurization

Original CFG Structurized Reconstructed
CFG CFG
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Middle-end Compiler ~

LLVM module I

* Divergence Intrinsic Insertion

* Split and Join Insertion

* Handling divergent branch with
vx_split and vx_join instruction

Loop predicate Insertion

Handling divergent loops with
vXx_pred

A 4

Middle-end Compiler

General Code Optimizations

Divergence Management

Uniformity Analysis || Divergence Tracker

Optimization and Transformation

Divergence Management Function Insertion

LLVM module w2

Blue boxes indicate components extended or implemented for the Vortex GPU 22



Back-end Compiler

* Handles target-specific optimizations and
final code generation

* Built on the RISC-V target compiler

* Extends the ISA table with Vortex-specific
ISA extensions

* Generates Vortex target binaries

LLVM module LT

N\

v

Back-end Compiler w2 R

RISC

Target Code Generation and
Optimization

Vortex ISA Table

Vortex Binary

Blue boxes indicate components extended or implemented for the Vortex GPU
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VOLT v1.0 Release

* Our tool is available in our Git repository
* https://github.com/vortexgpgpu/Volt/releases/tag

/v1.0

* The first release supports CUDA 12.1 and
OpenCL 3.0

* Provides an end-to-end PoCL / CuPBoP /

LLVM compilation pipeline targeting the
Vortex GPU

> Volt public

¥ master ~ ¥ 1Branch © 1Tag

. shin0403 minor update

pocl @ 61342

BB tests



https://github.com/vortexgpgpu/Volt/releases/tag/v1.0
https://github.com/vortexgpgpu/Volt/releases/tag/v1.0
https://github.com/vortexgpgpu/Volt/releases/tag/v1.0

Guide for VOLT Extensions

e Tutorial 1: Extending kernel functions
* Tutorial 2: Extending host functions

* Tutorial 3: Extending memory support with
the Vortex memory hierarchy

e All tutorials include documentation under

/Docs and runnable examples under /Tests.

0.index.md
1.getting_started.md
2.overview.md
3.PoCL_vortex.md
4.CuPBoP_vortex.md

[ 5.LLVM_vortex.md

D 6.analysis_and_transform_passess.md

[ 7.1.tutorial_kernel_extension.md
[ 7.2.tutorial_host_extension.md

[ 7.3.tutorial_shared_memory.md

25



Instruction Reduction
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Research Directions with Volt & Vortex

1. Micro-architectural Compiler Optimization
* Fine-grained instruction & warp scheduling
* Latency hiding via instruction prefetching
* Adaptive workload distribution and occupancy control

2. Architecture-aware Optimization & Analysis
* Exploitation Heterogeneous core
* Explore reconfigurable options

3. HW / SW Co-design Exploration
* Co-design of custom GPU extensions and compiler support

* ISA or micro-architectural features
* Feedback-driven optimization between hardware, compiler, and runtime
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Conclusion

* VOLT is a lightweight, extensible compiler toolchain optimized for Vortex

* Hierarchical design, Centralize SIMT-aware optimizations in the middle-
end
* Enables portability across Vortex variants

* Thread divergence management is treated as a first-class concern
* Uniformity analysis, divergence tracking, and control-flow optimizations
* Improves performance and reduces instruction count

» Extensibility and reproducibility
* Clear extension points for kernel, host, and memory support
 Tutorials, documentation, and shared scripts enable easy adoption and extension




Thank you
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