Inside VOLT: Designing an Open-
Source GPU Compiler

Shinnung Jeong?!, Chihyo Ahn!, Huanzhi Pu?, Jisheng Zhao?,
Hyesoon Kim?, Blaise Tine?
lGeorgia Institute of Technology, 2University of California, Los Angeles

sl UCLA

GPUs Power Modern Computing -
Openness Remains Limited

e AMDH
NVIDIA :i@

Core GPU microarchitecture and compiler internals
remain largely inaccessible to researchers

What Research Needs Beyond Exposed
APIs

—————————

AMDH ’

nVIDIA (@ “

>

—————————

GPU research would benefit from openness beyond exposed APIs

What Research Needs Beyond Exposed
APIs

NVIDIA

Vortex GPU provides a fully open-source GPU platform

branch | tmc | split | wspawn | barrier | join

Vortex GPU

1 Schedule 1 Fetch Y Decode b 4 Issue . Exefute
1 1
* RISC-V based GPGPU | wrp T o ¥ |
!

* Highly reconfigurable hierarchical i |
architecture 'Z‘é‘iﬂ”*’sﬁﬁ.ﬂ-ﬁ'&ﬂ:ﬂ—;'Dewde

- T
e SIMT execution model : WA (e]

¥ Tracker | 'stalled warps b

.. I
visible warps | 11

* Explicit hardware support for SIMT = ===

behavior, including control-flow
divergence and barriers \
GBAR] DCRs Socket ‘ P Core
’E Socket ‘ C::he{ Core
L2 | . o / .
!Cache: : :
""" ' Socket \ Core |

Cluster ‘

Processor Cluster Socket

branch | tmc | split | wspawn | barrier | join

Vortex GPU

e RISC-V based GPGPU : _

* Highly reconfigurable hierarchical

..
:.’ Fetch | Decode X Issue . Exepute
1 '

" L i [

FE
3

i
' writeback E
i

Open GPU hardware is advancing rapidly, while compiler support
remains underexplored

divergence and barriers

* Drivers for host-device communication — Socket | Core

GBAR , Cluster ‘ , SW P Core
E I

Cluster ‘ Socket ‘ Core

Processor)

Cluster Socket

Program Execution on Vortex GPU

__kernel void foo(
tid = get_global_id(0);

barrier(...);

}

__hostintmain(){

cl_mem A_clmem = clCreateBuffer(context, ...);
clEnqueueNDRangeKernel(command_queue,...);

Program

* Kernel code with control flow & special func

e Host Code with device communication

branch | tmc | split | wspawn | barrier | join Core

Schedule 1/"Fetch |/ Decode \/
'
\ Warp Table 1 H 1

1 [pc [mask

' 1

1 |

- l

'

'

1| IPDOM Warp

1| Stack “>| scheduler [
I

o 1

------- — " o | P 2
visible warps | 1 [1 ih I 1

barrier table | 1 1
i

4

Cluster
Processor

Socket

Vortex GPU
* Kernel binary using the Vortex GPU ISA

* Host executable using Vortex driver

Growing GPU Variants on Vortex

__kernel void foo(-

tid = get_global_id(0); Vlrgo

.t;.arrier(...); . A SkyBox
} "

VORTEX
Tensor core

__hostintmain(){

;i_mem A_clmem = clCreateBuffer(context, ...); SparseWeaver TaPEOUt

clEnqueueNDRangeKernel(command_queue,...);
}

Program Vortex GPU Variant
* Kernel code with control flow & special func * Kernel binary using the Extended Vortex GPU ISA

* Host Code with device communication * Host executable using Extended Vortex driver
8

Programs from Diverse Frontends

Virgo

\/ SkyBox
VORTEX

V4 a
OpenCL
» Tensor core

Triton <ANVIDIA. .
CUDA. SparseWeaver apeout

Program with Diverse Frontend Vortex GPU Variant

+ Kernel code with Frontend-specific semantics * Kernel binary using the Extended Vortex GPU ISA

* Host Code with Frontend-specific runtimes * Host executable using Extended Vortex driver
9

Managing Growing GPU Variants and

Diverse Frontends

4 a Virgo
OpenCL SkyBox
» VORTEX
Tensor core
Triton <ANVIDIA.
CUDA. SparseWeaver Tapeout
Program with Diverse Frontend Vortex GPU Variant

This Calls for a Well-Desighed Compiler Framework

Key Challenges in Designing VOLT

* Challenge 1: Make SIMT-aware code generation and optimizations portable

 How can we preserve SIMT-aware code generation and optimizations
while remaining portable across Vortex variants and potentially other open GPUs?

* Challenge 2: Support multiple frontends with minimal maintenance
overhead

* How can we design the compiler so that new frontends and GPU variants
can be added with minimal refactoring?

11

Vortex-Optimized Lightweight Toolchain (VOLT)

* Design Choice 1
* Hierarchical compiler design

* Centralize fundamental SIMT-related
analyses and optimizations in the middle-

end

* Design Choice 2

* Leverage existing open-source
components as much as possible

Front-end Compilersw CuPBoP

o

Middle-end Compiler S

o

Back-end Compiler %4, B/

RISC

Hierarchical Compiler
Design

12

N\

A nvioa

Front-end Compiler [Stretcode | ot BB

Front-end Compiler g@@ cupBoP ()
 Handles Both Host and Kernel Code

Host Code Compilation

Semantic Analyzer

* Host Code
e Compiled for the host hardware Host Runtime for HW Target
* Translates the frontend host functions Translator

using the target runtime library
Runtime Lib Linking

-
Host Binary ;

Blue boxes indicate components extended or implemented for the Vortex GPU 13

4 <
OpenCL

N\

| ANVIDIA. |
. CUDA. |

Front-end Compiler L=2feme code

v

Front-end Compiler g@@ cupBoP ()

* Handles Both Host and Kernel Code IR Generator
Semantic-aware Code Optimization
* Kernel Code Memory Structure Handling
* Performs semantics-aware code Function Call Analysis | [gyilt-in
optimizations _ _ _ Built-in Library Linking library
* Transforms special functions using
built-in libraries Thread Scheduling Code Generation
* Inserts thread scheduling and spawning Tireae Sdnes uilis 2 § o ot e
code for device initialization Insertion
l N
LLVM module Yoy

Blue boxes indicate components extended or implemented for the Vortex GPU

14

Middle-end Compiler .—— 3

A 4

» Target-independent optimizations
* Minimal target-specific logic

* Thread Divergence management
treated as a first-class concern

Middle-end Compiler 2

General Code Optimizations

Divergence Management

Uniformity Analysis || Divergence Tracker

Optimization and Transformation

Divergence Management Function Insertion

LLVM module w2

Blue boxes indicate components extended or implemented for the Vortex GPU

15

Thread Divergence Management

Divergent branch!
* SIMD ”
 Single instruction applied to multiple data

elements
* Uniform control flow
* Divergent branches are serialized

* SIMT

* Threads execute in lockstep under a shared
instruction stream

* Each thread has its own registers and stack

* Control-flow divergence is handled via
masking and serialization

16

Thread Divergence Management

* Divergence management
microarchitecture

* IPDOM stack for handling divergence
and reconvergence

* Per-warp thread mask for control-flow
management

* ISA support
e Thread mask control instruction
 Split and join instructions for If
* Predicate instruction for loop

Divergent branch!

if(r1){
++r2;

}else{
--rl;

» @else:

@then:
@join:

vx_split ro, ri
bne ri1, #0, @then
subi r2, r2, #1

j @Join

addi r2, r2, #1
vx_join ro

while(rl != 0){
++r2;
--rl;

}

» @phead:
@body:

@join:

seqz r3, rl, #0
vx_split ro, r3
bne r3, #0, @join
vx_tmask r4

add r2, r2, #1
subi r1, ri, #1
cmp r3,rl, #0
vx_pred r3, r4
bne r3, @body
vx_join ro

17

Middle-end Compiler w7)

LLVM module VN

A 4

e Uniformity Analysis Middle-end Compiler

* Find divergent instructions and always
uniform instructions

General Code Optimizations

* Divergence Tracker Divergence Management
* Mark Function arg, returns, Atomic as Uniformity Analysis || Divergence Tracker
Divergent
 Mark Control and Status Register info Optimization and Transformation
as Uniform Divergence Management Function Insertion

* Propagate information

LLVM module w2

Blue boxes indicate components extended or implemented for the Vortex GPU 18

Middle-end Compiler ~

LLVM module S

e Uniformity Analysis
 |dentify divergent instructions and always-
uniform instructions
* Annotation analysis

* Leverage annotation information from
the user or the front-end compiler

* Function argument analysis

* Determine the uniformity of each
function’s arguments

A 4

Middle-end Compiler

General Code Optimizations

Divergence Management

Uniformity Analysis || Divergence Tracker

Optimization and Transformation

Divergence Management Function Insertion

LLVM module w2

Blue boxes indicate components extended or implemented for the Vortex GPU 19

Middle-end Compiler

* Divergence Optimization
* Code Simplification
* Simplifies control flow

* Canonicalizes control flow to
simplify subsequent divergence
handling

e Control-Flow Structurization

* Transforms the CFG into a Structurization
structured form to provide stable
join points o .

* Essential for IPDOM-based Original CFG Strugc:ténzed

divergence and reconvergence
handling

20

Middle-end Compiler

Reconstruction

* Divergence Optimization
e Control-Flow Reconstruction e

» Selectively duplicates basic blocks to f
reduce predicate computation e. @‘e e
* Divergence Operation Lowering e Q o e
* Normalizes divergence operations \/ '

by rewriting them into equivalent G e
branch-based control flow

Structurization

Original CFG Structurized Reconstructed
CFG CFG

21

Middle-end Compiler ~

LLVM module I

* Divergence Intrinsic Insertion

* Split and Join Insertion

* Handling divergent branch with
vx_split and vx_join instruction

Loop predicate Insertion

Handling divergent loops with
vXx_pred

A 4

Middle-end Compiler

General Code Optimizations

Divergence Management

Uniformity Analysis || Divergence Tracker

Optimization and Transformation

Divergence Management Function Insertion

LLVM module w2

Blue boxes indicate components extended or implemented for the Vortex GPU 22

Back-end Compiler

* Handles target-specific optimizations and
final code generation

* Built on the RISC-V target compiler

* Extends the ISA table with Vortex-specific
ISA extensions

* Generates Vortex target binaries

LLVM module LT

N\

v

Back-end Compiler w2 R

RISC

Target Code Generation and
Optimization

Vortex ISA Table

Vortex Binary

Blue boxes indicate components extended or implemented for the Vortex GPU

23

VOLT v1.0 Release

* Our tool is available in our Git repository
* https://github.com/vortexgpgpu/Volt/releases/tag

/v1.0

* The first release supports CUDA 12.1 and
OpenCL 3.0

* Provides an end-to-end PoCL / CuPBoP /

LLVM compilation pipeline targeting the
Vortex GPU

> Volt public

¥ master ~ ¥ 1Branch © 1Tag

. shin0403 minor update

pocl @ 61342

BB tests

https://github.com/vortexgpgpu/Volt/releases/tag/v1.0
https://github.com/vortexgpgpu/Volt/releases/tag/v1.0
https://github.com/vortexgpgpu/Volt/releases/tag/v1.0

Guide for VOLT Extensions

e Tutorial 1: Extending kernel functions
* Tutorial 2: Extending host functions

* Tutorial 3: Extending memory support with
the Vortex memory hierarchy

e All tutorials include documentation under

/Docs and runnable examples under /Tests.

0.index.md
1.getting_started.md
2.overview.md
3.PoCL_vortex.md
4.CuPBoP_vortex.md

[5.LLVM_vortex.md

D 6.analysis_and_transform_passess.md

[7.1.tutorial_kernel_extension.md
[7.2.tutorial_host_extension.md

[7.3.tutorial_shared_memory.md

25

Instruction Reduction

Factor

Divergence Management Optimization

1.3
1.25
1.2
1.15
1.1
1.05

0.95

1.2
Cs=————c= °
1.15
1.1
7]
% 1.05
.S
o 1
Q
& 0.95
0.9
5 «2§ v S o“b &
A AN A S
RN & 2
——b+tree ——hotspot3D ——kmeans
——cfd =*=psort ——pathfinder

—*—sgemm3
—*—transpose

26

Research Directions with Volt & Vortex

1. Micro-architectural Compiler Optimization
* Fine-grained instruction & warp scheduling
* Latency hiding via instruction prefetching
* Adaptive workload distribution and occupancy control

2. Architecture-aware Optimization & Analysis
* Exploitation Heterogeneous core
* Explore reconfigurable options

3. HW / SW Co-design Exploration
* Co-design of custom GPU extensions and compiler support

* ISA or micro-architectural features
* Feedback-driven optimization between hardware, compiler, and runtime

27

Conclusion

* VOLT is a lightweight, extensible compiler toolchain optimized for Vortex

* Hierarchical design, Centralize SIMT-aware optimizations in the middle-
end
* Enables portability across Vortex variants

* Thread divergence management is treated as a first-class concern
* Uniformity analysis, divergence tracking, and control-flow optimizations
* Improves performance and reduces instruction count

» Extensibility and reproducibility
* Clear extension points for kernel, host, and memory support
 Tutorials, documentation, and shared scripts enable easy adoption and extension

Thank you

	Slide 1: Inside VOLT: Designing an Open-Source GPU Compiler
	Slide 2: GPUs Power Modern Computing - Openness Remains Limited
	Slide 3: What Research Needs Beyond Exposed APIs
	Slide 4: What Research Needs Beyond Exposed APIs
	Slide 5: Vortex GPU
	Slide 6: Vortex GPU
	Slide 7: Program Execution on Vortex GPU
	Slide 8: Growing GPU Variants on Vortex
	Slide 9: Programs from Diverse Frontends
	Slide 10: Managing Growing GPU Variants and Diverse Frontends
	Slide 11: Key Challenges in Designing VOLT
	Slide 12: Vortex-Optimized Lightweight Toolchain (VOLT)
	Slide 13: Front-end Compiler
	Slide 14: Front-end Compiler
	Slide 15: Middle-end Compiler
	Slide 16: Thread Divergence Management
	Slide 17: Thread Divergence Management
	Slide 18: Middle-end Compiler
	Slide 19: Middle-end Compiler
	Slide 20: Middle-end Compiler
	Slide 21: Middle-end Compiler
	Slide 22: Middle-end Compiler
	Slide 23: Back-end Compiler
	Slide 24: VOLT v1.0 Release
	Slide 25: Guide for VOLT Extensions
	Slide 26: Divergence Management Optimization
	Slide 27: Research Directions with Volt & Vortex
	Slide 28: Conclusion
	Slide 29: Thank you
	Slide 30: Design Goal of Open GPU Compiler
	Slide 31: Documentation
	Slide 32: Test Scripts

